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becomes significant in describing the vibrational properties of 
the atoms of lithium. 

326 _+ 1 K. This may be compared with the value of 352 _+ 
12 K obtained by Pankow (1936). 

(e) The parameter a 

The agreement between all subsets of data analysed for the 
isotropic harmonic parameters a 0 and a293 is excellent. The 
mean values from all subsets are 

a 0=45 .3  +_0.4eVnm -2 

and 

a293 = 42.2 _+ 0.3 eV nm -2. 

Hence, the corresponding values of ur.m.s, and Debye 
temperature calculated from them must be considered to be 
very reliable. The root-mean-square displacement U.m.~. = 
0.0424 _+ 0.0001 nm. The Debye temperature 0o is given by 

( u  2) 1 +  • 
Mkn Oo2 -~  

where M is the atomic mass. The value obtained was Ot) = 
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Abstract 

Six angles are formed between four straight lines meeting at a 
point in space. Since there is one relationship between them. 
only certain combinations of six regular polygons will fit 
together at such a point. Some of these are enumerated. 

When four straight lines meet at a tetrahedral vertex in space 
they make six angles, any one of which is determined by the 
other five as the solution to a quadratic equation. The 
relationship between them was known to Carnot (1803) and 
was stated by Fedorov (1886) in the modern determinantal 
form: 

1 cos 0~2 cos 013 cos 014 ] 

cos 012 1 cos 023 cos 024 I=0" 

cos 013 cos 023 1 cos 034 

COS 014 COS 024 COS 034 1 

In dealing, for example, with network silicates, we can ask 
what combinations of six regular polygons may meet at such 
a tetrahedral vertex. The corresponding solutions for a vertex 
in a plane at which three regular polygons meet are quoted in 
Table 1 (from Holiday & Philpot, 1977). 
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The formula quoted derives from the metric matrix of a 
unit cell with four axes of unit length, the terms of the matrix 
being the scalar products a i aj of all pairs of axes. The 
determinant of the metric matrix gives the square of the 
four-dimensional content of the unit cell. If the metric matrix 

Table 1. The possible combinations o f  three regular 
polygons at a common vertex in the plane 

If the number of sides of the polygon is given as negative it 
indicates that the corresponding polygon contains the other two. 

(1-2) (1-3) (2-3) 
3 7 42 
3 8 24 
3 9 18 
3 10 15 
3 12 12 

4 5 20 
4 6 12 
4 8 8 
5 5 10 
6 6 6 

3 3 -6  
4 3 -12 
5 3 -30 
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Tab l e  2. Regular polygons meeting at a tetrahedral 
vertex 

Numbers of sides of the polygon between axes 1, 2, 3, 4. 

(1-2) (I-3) (I-4) (2-3) (2-4) (3-4)Symmetry Notes 
I 4 3 3 3 3 4 3,2m 
2 5 5 3 3 5 3 2 
3 5 5 4 5 3 3 m 
4 6 4 3 4 3 4 m 
5 6 6 4 4 3 3 m 

6 6 6 4 5 5 5 m 
7 6 6 4 4 6 6 42m 
8 8 4 4 3 3 4 m 
9 8 6 3 4 4 4 1 

10 8 6 6 4 4 4 m 

11 8 8 4 3 3 3 m 
12 8 4 4 4 3 8 2 
13 8 6 4 4 4 8 2 
14 8 8 4 3 6 6 m 
15 10 5 3 4 4 4 1 

16 10 5 4 3 5 3 1 
17 10 6 4 3 3 5 1 
18 10 6 4 4 3 5 1 
19 10 6 5 4 4 4 1 
20 10 5 4 4 5 6 2 

21 10 6 6 4 3 5 1 
22 10 10 3 3 5 4 1 
23 10 5 4 4 3 I0 2 
24 10 5 3 3 5 I0 222 
25 10 10 4 3 5 5 m 

(a) 

(b) 
(c) 

(d) 

Table 2 shows the results of  compute r  enumerat ion 
(systematically examined for polygons with up to 20 sides 
and sporadically searching thereafter). Configurations in 
which three lines are co-planar have been excluded. 

In the computer  program* it was necessary to consider 
how many  different tetrahedral vertices (counting enantio- 
morphs  as identical) may be constructed,  given six different 
angles. The number  found is 30 so that  this number  of  
combinat ions had to be checked for each set of  six different 
angles. The question is very similar to that of  indexing a 
powder photograph  where the six elements of  the metric 
matrix may  be chosen in 30 ways from six different observed 
spacings. 

Not  only must  the determinant  be zero but no triplet of  
angles between three axes must  add to 360 ° or more.  
Examples, such as (3, 4, 14, 14, 4, 7), can be found where the 
determinant  is zero but which are impossible because here 
the angle (1-4)  is greater than the angles (1-2)  and (2-4)  
combined.  

No case of  six different regular polygons meeting at a 
point was found. Two cases were found where the solution 
was not exact but was nevertheless closely approximated.  In 
these two cases regular polygons with 30, 7 and 3 sides give a 
vertex total of  356.57 ° so that  three edges are nearly 
co-planar. 

A number  of  the types of  vertices listed in Table 2 occur  in 
the networks described by Wells (1977) in terms of  their 
topology, rather  than of  actual bond angles. One case (12, 6, 
4, 4, 4, 6) which occurs in faujasite, is topologically possible, 
but, if the polygons are to be regular, would require the triplet 
of  polygons with 12, 4 and 6 sides to be co-planar. 

26 I0 6 4 3 5 10 1 
27 10 10 3 3 10 6 2 

28 30 7 5 3 3 5 (e) 
29 30 7 3 3 5 9 (e) 

Notes: (a) includes vertex of dodecahedron; (b) includes vertex of 
dodecahedron; (c) vertex in space filling by Thomson cubes; 
(d) vertex in packing of alternating truncated cubes and cubocta- 
hedra with inserted truncated tetrahedra (Wells, 1977, p. 170); 
(e) approximate solutions; determinant ~ 10 -7. 

is of  rank less than four and its determinant  thus zero, then 
the four vectors can be embedded  in ordinary three- 
dimensional space, where any one of  them can be expressed 
as a linear combinat ion of  the other three. If any three 
vectors are co-planar,  the rank of  the metric matrix will be 
further lowered. Extension to higher dimensionali ty is 
obvious. 

*A listing of the ANGLES computer program has been 
deposited with the British Library Lending Division as Supplemen- 
tary Publication No. SUP 36245 (3 pp.). Copies may be obtained 
through The Executive Secretary, International Union of 
Crystallography, 5 Abbey Square, Chester CH 1 2HU, England. 
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